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A two-d~nensional solution to the classical boundary-value problem of heat conduction 
is obtained in quadratures for a half-space. Heat is supplied here through a thin 
circular layer with the thermal flux density varying arbitrarily in time. 

Two-dimensional transient temperature fields building up in semiinfinite bodies with 
local stationary and moving heat sources on their surface must be calculated in various areas 
of experimental physics, science, and engineering (examples being electron-beam and laser 
heating of massive objects, spot welding of metals, probing methods of nondestructive inspec- 
tion for comprehensive determination of thermophysical characteristics of materials, etc.). 

The unique correspondence between the one-dimensional transient temperature field 
T(x, T) in a semiinfinite body and the thermal flux q(T) impinging on its surface is in the 
theory of heat conduction described by the well-known quadrature expression [i] 

1 ~ [ ~ x~ ] q(~) 
T (x, x) - -  To = - -  ( ~xp a~. (1) 

b l / ~  4a (~ - -  ~) | ~/~-_ ~ 

When the values of T(x, T) are known and the values of q(T) are not, then expression (i) 
constitutes an integral equation for determining the law according to which q(T) varies 
(reverse problem of heat conduction). 

The problem in this study will be to determine the two-dimensional transient temperature 
field T(r, x, T) in cylindrical coordinates as a function of the thermal flux density q(T) 
within a bounded circular region 0~r < ro on the surface of a semiinfinite body (x = 0). 
At the x = 0 surface we assume throughout the infinite region ~ > r > ro no temperature 
gradient in a direction normal to the boundary of the body. The initial temperature distri- 
bution is assumed to be uniform over all points of the semiinfinite body: To = const. On 
this basis, the mathematically formulated problem reduces to the system of differential 
equations (with the origin of coordinates at the center of the heating spot of radius r = ro 
on surface x = 0): 

for the region 0~<r < ro, x~0 at time T > 0 

OZT (r, x, ~) + 1 aT( r ,  x, ~) + O2T (r, x, ~) = 1 .  OT (r, x, ~) ," (2) 
Or 2 r Or Ox 2, a OT 

for the region ~ > r > ro, x ~0 at time T > 0 

a2e(r, x, ~)__ § 1 ae(r,  x, T) -t- 02~)(r, x, "~) = 1 c)O(r, x, "0 (3) 
Or 2 r Or Ox z a O'c 

The initial condition for both equations will be stipulated as 

2" (r,  x,  O) = e (r, x,  O) = To = const ,  (4) 

and the boundary conditions will be 
--X aT(r, 0,.~) _q( , ) ;  

Ox (5) 
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O0(r, O, ,) = O; 
Ox 

OT (0, x, "0 =. 0 (condition of symmetry); 
Or 

OT(r, co, 1:) := O0(r, oo, a;) _ O@(oo, x, ~) =0 ;  
Ox Ox , Or 

(6) 

(7) 

(8) 

T(ro, x, ~)= O(ro, x, x); (9) 

OT (r O, x, x) O0 (r o, x, ~) 
Or Or (i0) 

Applying to Eqs. (2) and (3) the  i n f i n i t e  Four ie r  and Laplace i n t e g r a l  t r ans fo rma t ions  
yields, for the given boundary conditions, the respective solutions in the form 

- -  1 bi [ x 2 ] q ( ~ ) d ~  T (r, x, ~) --  To =- b V-~ exp [ 4a (~ - ~) g x - 

r o 1 co 0+500 

~, g'i J' j" exp(s~) 
0 ~--ioo 

I~176 /P'+S)$(S)cospxdpd s 
+--d 

(11) 

for the region 0 > r > ro, x ~0 at time T > 0 and 

O ( r ' x ' ' O - - T ~  r~ 1 ~~176176 ( V @ )  ( / ;  @ )  q(s, cospx dpds (12) )~ nzi o _j exp(sx) 11 ro pZ+ Ko r ; +  

. F / , P~+ a 

for the region = > r > ro, x ~0 at time T > 0. 

In expressions (ii) and (12) p is the parameter of infinite Fourier cosine integral 

transformation 

o o  

It(r, p, ~)= j' [(r, x, ~)cospxdx; (13) 
0 

oo 

q (s) = J q (~) exp (--sz) dr. 
0 

(14) 

Let us consider the particular case of solution (ii) on the axis at x >f0. Letting r = 0 
(so that Io(0) = i) in expression (ii), we integrate the latter with respect to parameter p 
and use for this the known value of the Sonin--Gegenbauer integral [2-5]. Then, upon applying 
the convolution theorem for the originals of two functions, we obtain the equation in quadra- 

tures 

. . . .  1 --exp (15) AT(0, x, ~ ) = -  exp 4a(~--~) 4a(~ ~) ]/~ 
bV~ o 

for determining the excess temperature AT(0, x, T) = T(0, x, T) -- To along x ~ 0 on the axis 
of the semiinfinite body. It is obvious that with ro + ~ we obtain the quadrature expression 

(i) for the one-dimensional case. 

We will now use the quadrature expression (15) for determining the laws of temperature 
variation AT(0, x, T) in certain special cases of q(T). 
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i. We assume that at time T > 0 on the surface x = 0 within the region 0 ~r < ro there 
appears a constant thermal flux of density q(T) = qo = const. According to the quadrature 
expression (15), the temperature field AT(0, x, T) along x~0 on the axis of the semiinfinite 
body will then be 

AT (0, x, "0 qo f exp - -  - -  1 - -  exp • 
b 1/-~ b [ 4a (T -- ~) 4a (~ -- ~) 

( 1 6 )  

where 

X ierfc ( 1 / r ~  + x 2 

1 
ierfc z = ,  V ~  exp ( - - z  2) - -  z erfc z. 

E x p r e s s i o n  ( 1 6 )  f o r  A T ( 0 ,  x ,  T) i s  i d e n t i c a l  t o  t h e  w e l l - k n o w n  s o l u t i o n  [ 6 ] .  

2 .  We a s s u m e  t h a t  a t  t i m e  T > 0 on t h e  s u r f a c e  x = 0 w i t h i n  t h e  r e g i o n  0 ~ r  < r o  
t h e r e  a p p e a r s  a t h e r m a l  f l u x  o f  a d e n s i t y  w h i c h  v a r i e s  i n  t i m e  a c c o r d i n g  t o  t h e  l a w  q ( T )  = 
B/C~-T, w i t h  B = c o n s t  c h a r a c t e r i z i n g  a c i r c u l a r  h e a t  s o u r c e .  Then  t h e  q u a d r a t u r e  e x p r e s s i o n  
( 1 5 )  y i e l d s  t h e  e q u a t i o n  

AT (0, x, x) bf exp 1 - -  exp ro 
b V ' n  4a (~ - -  ~) 4a (z - -  ~) • 

X 
dE S V ~ {  ( x) ( )} 2 Va-~ - -  erfc ] /  r~ -+- x 2 

2 ] /a '~  (17) 

t l  - -  4a ('~ - -  ~) 

found in tables 

for the temperature field AT(0, x, T) along x ~0 on the axis of the semiinfinite body. 

The integration in Eq. (17) can be easily performed after prior change of variables to 

x~ d + x2 
and t 2 = 4a(T--~) and subsequent reduction of the integrals to the form 

o~ e_ht dt n kz 
S = ~ e erfc V ' ~ ,  

V-f(t + z) V z 

(Re k > o, z 4: o, larg zl < n). 

3. We assume that on the surface x = 0 within the region 0 ~r < ro there appears a 
thermal flux in the form of a rectangular pulse of duration To: 

q (z) = Iqo = const  at 0 ~ x ~ -Co, ( 1 8 )  

/o a t  T > %. 

According to the quadrature expression (15), the excess temperature AT(0, x, T) along x ~0 
on the axis of the semiinfinite body varies then according to the law 

ar(o,x,~) qo i~ [ x~ ]{ [ 2 ] }  2qoVXl ( x 1 = - - ,  exp 1 - -  exp ro , dE _ ierfc 
b 1 /~  J 4a (z -- ~) 4a (z --~) l / z  -- ~ b 2 ~ , 

_ ( V d + x 2  ierfck Z-F'~ ) 
For T ~To expression (19) becomes solution (16) 
present within the given region. 

2 ] / a ( . ~ _ T o  ) - -  ierfc 2 g a ( T - - T o )  " ( 1 9 )  

for a constant thermal flux continuously 
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With x = 0 expression (19) yields the excess temperature as function of time ST(0, 0, r) 
at the point r = x = 0 located at the center of the heating spot on the surface of the semi- 
infinite body, namely 

AT(0,  O, z)--2q~ { ( r~ [ ( ro 
bV~ I--~ierfc 2~-~ ) - U('c-T~ I//7~T~ 1 --~ ierfc "-- ) li" 

: - -  . 2 V a ( ~ _ ~ o  ) . (20) 

4. We assume that at time T > 0 on the surface x = 0 within the region 0 ~r < ro there 
appears a thermal flux of a density 

q ('~)= q~-I- k-c, (21) 

which within the given region varies as a linear functio~ of time, with k = const charac- 
terizing the heat source and qo = const. 

Quadrature expression (15)for condition (21) yields the temperature field AT(0, x, T) 
along x ~ 0 on the axis of the semiinfinite body 

b q o + k z + ~ -  - ierfc , 2]/a-~ / 

ierfc V-~  + x ~ 2kT l/-~-~ x2 rg kPo ] /T  //- ' 
2 ]/a-~ 3 ~ b exp t 4a~: 4a~  3ba , 2 V'-a-r-rT " (22) 

When k = 0, then expression (22) becomes solution (16) for q(T) = qo = const. 

When qo = 0, then expression (22) readily yields the solution AT(0, <x, r) for q(T) = k7 
given. Letting x = 0 in expression (22), we obtain &T(0, 0, T) at the center point of the 
heating spot on the surface of the semiinfinite body for a thermal flux which within the spot 

region obeys law (21): 

ST'(0, 0, ~) = 21/-'~ 2 1 / T  + k~ + ierfc 1 - -  exp b / ~  (qo + kT) qo - - - -  
b 6a j 3V b , 4aT ") ] ' 

(23) 
considering that ierfc(0) = I/r 

Letting x = 0 in the particular solutions (16) and (17), one can analogously establish 
the relation between temperature excess at the center of the heating spot (t = x = 0) and 
given flux density within the spot region on the body surface. 

In the general Case expression (15) for x = 0 becomes the particular quadrature ex- 
pression which relates excess temperature AT(0, x, T) = T(0, 0, T) -- To at the center of the 
heating spot (point r = x = 0) and density of the thermal flux crossing the surface x = 0 

within the bounded circular region, namely 

AT (0, 0, T) = - -  1 -- exp ~ (24) 
b V-~ 4= (T - ~) I TV-'~-Z--- ~ 

When the quadrature expression (24) or the particular solutions obtained in this study 
for determining the relations AT(0, 0, T) = f[q(r), rq, b, a, T] are used for analyzing the 
thermophysical characteristics of materials, then such equations can serve as the analytical 
basis for derivation of calculation formulas which will yield ~, ~, b, and cy from measure- 
ments of temperature changes only at the center of the heating spot and thus for devising 
workable methods of nondestructive inspection (methods not involving distintegration of the 
test sample) such as the methods successfully used for determining the thermophysical pro- 
perties of solids [7-10]. It is to be noted that all the complexity of practical implementa- 
tion of such methods relates to the purely technical difficulties in producing specific con- 
trollable densities of thermal flux q(T) entering through a specific region of the given semi- 

infinite body. 
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NOTATION 

T(r, x, T), temperature field in region (0 ~ r < ro, x > 0) of semiinfinite body at 
time T > 0; (r, x, T), temperature field in region ~ > r > ro, x > 0) of semiinfinite body 
at time T > 0; ro, radius of the heating spot; r, radial coordinate; ~, time; q(~), thermal 
flux density inside the heating region (circular heat source) arbitrarily varying in time; 

a, thermal diffusivity; I, thermal conductivity; b, thermal activity of semiinfinite body; 
oo oo 

e--l~dt - , probability integral; ierfcX= erfc~d~ , multiple probability integral; erfc X = V ~  x x 

A T ( r ,  x ,  T) = , T ( r ,  x ,  T) - - T o ,  e x c e s s  t e m p e r a t u r e  o f  s e m i i n f i n i t e  body  i n  r e g i o n  (0<~ r < r o ,  

x >/ 0) a t  t i m e  T > 0;  q o ,  c o n s t a n t  t h e r m a l  f l u x  d e n s i t y  i n s i d e  t h e  h e a t i n g  s p o t ;  B = q ( T ) ~ - r  = 

const, constant characterizing the variation of thermal properties of given circular local 
heat source as function of time; AT(0, x, T), excess temperature on the axis (r = 0, x ~ 0) 
of semiinfinite body in selected system of coordinates at any instant of time T > 0; AT(0, 0, 
T), excess temperature; Io and II, modified Bessel functions of the first kind of respectively 
zeroth and first order; Ko and KI, modified Bessel functions of the second kind of respectively 
zeroth and first order; U(T -- To), symmetric unit-step function. 
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